Episodic ataxia type 1 mutations affect fast inactivation of K+channels by a reduction in either subunit surface expression or affinity for inactivation domain

Author:

Imbrici Paola1,D'Adamo Maria Cristina1,Grottesi Alessandro2,Biscarini Andrea3,Pessia Mauro1

Affiliation:

1. Section of Human Physiology and

2. Computational Chemistry and Biology Group, Interuniversity Consortium for the Application of Supercomputing for Universities and Research (CASPUR), Rome, Italy

3. Section of Medical Physics, University of Perugia School of Medicine, Perugia, Italy; and

Abstract

Episodic ataxia type 1 (EA1) is an autosomal dominant disorder characterized by continuous myokymia and episodic attacks of ataxia. Mutations in the gene KCNA1 that encodes the voltage-gated potassium channel Kv1.1 are responsible for EA1. In several brain areas, Kv1.1 coassembles with Kv1.4, which confers N-type inactivating properties to heteromeric channels. It is therefore likely that the rate of inactivation will be determined by the number of Kv1.4 inactivation particles, as set by the precise subunit stoichiometry. We propose that EA1 mutations affect the rate of N-type inactivation either by reduced subunit surface expression, giving rise to a reduced number of Kv1.1 subunits in heterotetramer Kv1.1-Kv1.4 channels, or by reduced affinity for the Kv1.4 inactivation domain. To test this hypothesis, quantified amounts of mRNA for Kv1.4 or Kv1.1 containing selected EA1 mutations either in the inner vestibule of Kv1.1 on S6 or in the transmembrane regions were injected into Xenopus laevis oocytes and the relative rates of inactivation and stoichiometry were determined. The S6 mutations, V404I and V408A, which had normal surface expression, reduced the rate of inactivation by a decreased affinity for the inactivation domain while the mutations I177N in S1 and E325D in S5, which had reduced subunit surface expression, increased the rate of N-type inactivation due to a stoichiometric increase in the number of Kv1.4 subunits.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3