Author:
Reinach P. S.,Schoen H. F.,Candia O. A.
Abstract
In the bullfrog cornea, the relationships between the rates of aerobic and anaerobic glycolysis and active Cl and Na transport were studied. In NaCl Ringer (glucose-free), the short-circuit current (SCC) declined much more slowly under aerobic than under anaerobic conditions. The aerobic lactate effluxes in glucose-free and glucose-rich NaCl Ringer were 0.08 and 0.23 micromol/h.cm2, respectively. The transition to anoxia caused these values to increase significantly and was accompanied by depletion of endogenous glycogen in glucose-free Ringer. In Na2SO4 Ringer, amphotericin B (10(-5) M) stimulation of the aerobic SCC was not dependent on the presence of glucose but under anoxia, SCC stimulation required glucose. In Na2SO4 (glucose-rich) Ringer, amphotericin B stimulated the aerobic lactate efflux from 0.26 to 0.36 mumol/h.cm2 and anoxia increased it to 0.55 micromol/h.cm2. In NaCl Ringer, the addition of either 0.5 mM adenosine or 1 mM ATP with 26 mM glucose restored the anaerobic-inhibited SCC and lactate efflux of glucose-depleted corneas. The results show that the reactions of glycolysis are a sufficient energy source for supporting active Na and Cl transport.
Publisher
American Physiological Society
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献