Autoactivation of matriptase in vitro: requirement for biomembrane and LDL receptor domain

Author:

Lee Ming-Shyue,Tseng I-Chu,Wang Youhong,Kiyomiya Ken-ichi,Johnson Michael D.,Dickson Robert B.,Lin Chen-Yong

Abstract

In live cells, autoactivation of matriptase, a membrane-bound serine protease, can be induced by lysophospholipids, androgens, and the polyanionic compound suramin. These structurally distinct chemicals induce different signaling pathways and cellular events that somehow, in a cell type-specific manner, lead to activation of matriptase immediately followed by inhibition of matriptase by hepatocyte growth factor activator inhibitor 1 (HAI-1). In the current study, we established an analogous matriptase autoactivation system in an in vitro cell-free setting and showed that a burst of matriptase activation and HAI-1-mediated inhibition spontaneously occurred in the insoluble fractions of cell homogenates and that this in vitro activation could be attenuated by a soluble suppressive factor(s) in cytosolic fractions. Immunofluorescence staining and subcellular fractionation studies revealed that matriptase activation occurred in the perinuclear regions. Solubilization of matriptase from cell homogenates by Triton X-100 or sonication of cell homogenates completely inhibited the effect, suggesting that matriptase activation requires proper lipid bilayer microenvironments, potentially allowing appropriate interactions of matriptase zymogens with HAI-1 and other components. Matriptase activation occurred in a narrow pH range (from pH 5.2 to 7.2), with a sharp increase in activation at the transition from pH 5.2 to 5.4, and could be completely suppressed by moderately increased ionic strength. Protease inhibitors only modestly affected activation, whereas 30 nM (5 μg/ml) of anti-matriptase LDL receptor domain 3 monoclonal antibodies completely blocked activation. These atypical biochemical features are consistent with a mechanism for autoactivation of matriptase that requires protein-protein interactions but not active proteases.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3