Muscular contraction’s therapeutic potential for cancer-induced wasting

Author:

Hardee Justin P.1ORCID,Carson James A.23ORCID

Affiliation:

1. Department of Anatomy & Physiology, Centre for Muscle Research, University of Melbourne, Parkville, Australia

2. Division of Rehabilitation Sciences, University of Tennessee Health Science Center, Memphis, Tennessee

3. Department of Physical Therapy, College of Health Professions, University of Tennessee Health Science Center, Memphis, Tennessee

Abstract

Skeletal muscle atrophy and dysfunction contribute to morbidity and mortality in patients with cancer. Cachexia pathophysiology is highly complex, given that perturbations to the systemic cancer environment and the interaction with diverse tissues can contribute to wasting processes. Systemic interleukin 6 (IL-6) and glycoprotein 130 (gp130) receptors signaling have established roles in some types of cancer-induced muscle wasting through disruptions to protein turnover and oxidative capacity. Although exercise has documented benefits for cancer prevention and patient survival, there are significant gaps in our understanding of muscle adaptation and plasticity during severe cachexia. Preclinical models have provided valuable insight into the adaptive potential of muscle contraction within the cancer environment. We summarize the current understanding of how resistance-type exercise impacts mechanisms involved in cancer-induced muscle atrophy and dysfunction. Specifically, the role of IL-6 and gp130 receptors in the pathophysiology of muscle wasting and the adaptive response to exercise is explained. The discussion includes current knowledge gaps and future research directions needed to improve preclinical research and accelerate clinical translation in human patients with cancer.

Funder

American College of Sports Medicine

HHS | NIH | National Cancer Institute

USC | Office of the Vice President for Research, University of South Carolina

University of South Carolina

University of Melbourne

Australian Research Council

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3