Active vitamin D induces gene-specific hypomethylation in prostate cancer cells developing vitamin D resistance

Author:

Lai Guan-Rong1,Lee Yi-Fen2,Yan Shian-Jang1,Ting Huei-Ju3

Affiliation:

1. Department of Physiology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, Republic of China

2. Department of Urology, Pathology, and Wilmot Cancer Cancer, University of Rochester, Rochester, New York

3. Department of Biological Sciences and Technology, National University of Tainan, Tainan, Taiwan, Republic of China

Abstract

Prostate cancer (PCa) is a leading cause of cancer death in men. Despite the antiproliferative effects of 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3] on PCa, accumulating evidence indicates that 1,25(OH)2D3 promotes cancer progression by increasing genome plasticity. Our investigation of epigenetic changes associated with vitamin D insensitivity found that 1,25(OH)2D3 treatment reduced the expression levels and activities of DNA methyltransferases 1 and 3B (DNMT1 and DNMT3B, respectively). In silico analysis and reporter assay confirmed that 1,25(OH)2D3 downregulated transcriptional activation of the DNMT3B promoter and upregulated microRNAs targeting the 3′-untranslated regions of DNMT3B. We then profiled DNA methylation in the vitamin D-resistant PC-3 cells and a resistant PCa cell model generated by long-term 1,25(OH)2D3 exposure. Several candidate genes were found to be hypomethylated and overexpressed in vitamin D-resistant PCa cells compared with vitamin D-sensitive cells. Most of the identified genes were associated with mammalian target of rapamycin (mTOR) signaling activation, which is known to promote cancer progression. Among them, we found that inhibition of ribosomal protein S6 kinase A1 (RPS6KA1) promoted vitamin D sensitivity in PC-3 cells. Furthermore, The Cancer Genome Atlas (TCGA) prostate cancer data set demonstrated that midline 1 ( MID1) expression is positively correlated with tumor stage. Overall, our study reveals an inhibitory mechanism of 1,25(OH)2D3 on DNMT3B, which may contribute to vitamin D resistance in PCa.

Funder

Ministry of Science and Technology, Taiwan

National University of Tainan

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3