Affiliation:
1. Department of Kinesiology, University of California, Los Angeles90024-1568.
Abstract
The variability among single muscle fiber enzymatic activities and fiber size within a motor unit was studied in the cat tibialis anterior (TA) muscle. Fourteen units were isolated for physiological testing using standard ventral root filament stimulation techniques, and the muscle fibers of these units were identified by glycogen depletion. The cross-sectional areas, succinate dehydrogenase (SDH) and alpha-glycerolphosphate dehydrogenase (GPD) activities, and the relative alkaline myofibrillar adenosine triphosphate staining densities of a sample of glycogen-depleted and -nondepleted muscle fibers were determined using quantitative histochemical techniques. Each of the unit types previously identified to be present in the TA, based on physiological criteria, were represented by the sample population. The variability among the fibers of a unit was significantly more than the variability among repeated measures on a single fiber for cross-sectional area and SDH and GPD activities. The mean coefficients of variation for SDH and GPD activity within motor unit fibers were 29 and 56%, respectively, whereas the variability between fibers of different units within a muscle was significantly greater (53 and 69%, respectively). Additionally, the mean coefficient of variation for cross-sectional area among motor unit fibers was less than that among fibers not depleted of glycogen (25 vs. 46%). These data suggest that although there is clear evidence for some level of neural control of the properties of a muscle unit (variation within a unit was less than the variation across units), this control is not complete, since the variability among fibers of a single unit was significantly more than the variability found between repeated measurements on a single fiber.
Publisher
American Physiological Society
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献