Affiliation:
1. Research Department, Alfred I. duPont Institute, Wilmington, Delaware19899.
Abstract
Regeneration of damaged, mature muscle occurs by differentiation of satellite cells. In culture, satellite cell myoblasts proliferate, align, and fuse to form cross-striated, contracting myotubes. The biochemical changes and the factors that regulate differentiation in satellite cells have not been investigated previously. We report here that no significant differences in glucose uptake rate or glucose oxidation rate were observed between regenerating myoblasts and myotubes, whereas the aerobic oxidation of palmitic acid increased 7.3-fold between these differentiation states. Specific activities of enzymes of critical importance in aerobic metabolism or in production of ATP were increased 2- to 3.5-fold during fusion. Addition of 20 microM hemin to regenerating muscle cultures potentiated the aerobic capacity as evidenced by a 23.6% increase in palmitate oxidation rate. Hemin also increased the specific activities of all nonheme enzymes investigated with the exception of phosphofructokinase. This augmentation of aerobic metabolism together with the time frame of active muscle differentiation suggests a complex role for hemin in myogenesis.
Publisher
American Physiological Society
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献