Na+-coupled sugar transport: membrane potential-dependent Km and Ki for Na+

Author:

Kimmich G. A.1,Randles J.1

Affiliation:

1. Department of Biochemistry, School of Medicine and Dentistry,University of Rochester, New York 14642.

Abstract

Kinetic analysis of the characteristics of phlorizin binding and of the Na+, sugar, and potential dependence of alpha-methylglucoside (alpha-MG) influx into isolated avian intestinal cells has pointed toward two alternative models for the transport mechanism (D. Restrepo and G. A. Kimmich, J. Membr. Biol. 89: 269-280, 1986). One of these models envisions a potential-dependent Na+ binding event (Na+ well concept) as a part of the molecular mechanism. The data reported here show that the apparent Km for Na+ for sugar transport is sharply dependent on the magnitude of the membrane potential. When intracellular Na+ is absent, the maximal velocity (Vmax) achieved for sugar influx is the same with or without a potential, although Vmax is obtained at a lower Na+ concentration when a potential is imposed (interior negative). Intracellular Na+ severely inhibits the influx of sugar in the absence of a potential, but this effect is largely overcome when a potential is present. The Vmax obtained when intracellular Na+ is present is a function of the potential. These results are consistent with a transport model in which Na+ binding to the Na+-dependent sugar carrier at the extracellular surface of the membrane and debinding at the inner surface of the membrane are both potential-dependent events.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 37 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3