Adenosine receptor-mediated calcium mobilization in cortical collecting tubule cells

Author:

Arend L. J.1,Burnatowska-Hledin M. A.1,Spielman W. S.1

Affiliation:

1. Department of Physiology, Michigan State University, East Lansing48824-1101.

Abstract

To investigate the cellular mechanisms underlying the epithelial actions of adenosine, we studied adenosine receptor-effector coupling in cultured rabbit cortical collecting tubule (RCCT) cells. We previously reported, in RCCT cells isolated by immunodissection, that a potent A2 adenosine analogue [5'-N-ethylcarboxamideadenosine (NECA)] stimulates cAMP production [effective concentration 50% (EC50) = 1 microM], and potent A1 analogues [N6-cyclohexyladenosine (CHA) and R-N6-phenylisopropyladenosine (PIA)] inhibit basal and AVP-stimulated cAMP production (EC50 = 5 nM). The present study was undertaken to determine whether adenosine receptors in RCCT cells are also coupled to a signal transduction system leading to the mobilization of intracellular free calcium. RCCT cells were loaded with the fluorescent calcium indicator, fura-2, and were treated with the adenosine analogues NECA, CHA, and PIA. All three adenosine analogues produced dose-dependent (1 nM-0.1 mM), transient increases in intracellular calcium concentration with equal potency (EC50 = 0.5 microM). Chelation of extracellular calcium with ethyleneglycol-bis(beta-aminoethyl ether)N,N,N',N' tetraacetic acid (EGTA) did not abolish the increase in calcium. The adenosine receptor antagonists, 1,3-diethyl-8-propylxanthine and 8-cyclopentyl-1,3-dipropylxanthine, and pretreatment of RCCT cells with pertussis toxin blocked the increase in calcium. These results demonstrate that RCCT cells have, in addition to adenosine receptors associated with the stimulation and inhibition of cAMP, a pertussis-toxin sensitive receptor system that leads to the mobilization of intracellular calcium.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 61 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. ATP and adenosine in the local regulation of water transport and homeostasis by the kidney;American Journal of Physiology-Regulatory, Integrative and Comparative Physiology;2009-02

2. Kinetics of PME/Pi in pig kidneys during cold ischemia;NMR in Biomedicine;2007

3. Adenosine and Kidney Function;Physiological Reviews;2006-07

4. Sodium MRI of the human kidney at 3 Tesla;Magnetic Resonance in Medicine;2006

5. Sodium magnetic resonance imaging of diuresis: Spatial and kinetic response;Magnetic Resonance in Medicine;2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3