Mechanics and energetics of lengthening of active airway smooth muscle

Author:

Hanks B. S.,Stephens N. L.

Abstract

For smooth muscle in general there appears only one report dealing with force-velocity (FV) relationships of active muscle subjected to forcible elongation by application of loads (P) greater than its maximum isometric tetanic tension (Po); for airway smooth muscle (ASM) there is none. Since ASM may be subjected to increasing stretch during inspiration, the relationship is important and was therefore studied with canine tracheal smooth muscle (TSM) as a model. FV data for P less than Po could be fitted by Hill's hyperbolic equation. For P greater than Po, lengthening velocity was greater than predicted by the equation. However at equivalent velocities, the muscle during elongation could support a load three times greater than during shortening; in this it resembled skeletal muscle. From this it may be speculated that distension of the airway during inspiration would not be associated with mechanical instability. With reference to energy requirements of the elongating TSM it was shown, as has been for skeletal muscle, that the net rate of energy liberation (assessed by measuring tissue levels of adenosine triphosphate and creatine phosphate) in an elongating active muscle is less than that of a muscle contracting isometrically.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Systems physiology of the airways in health and obstructive pulmonary disease;WIREs Systems Biology and Medicine;2016-06-24

2. Modeling the impairment of airway smooth muscle force by stretch;Journal of Applied Physiology;2015-03-15

3. Potential role of the airway wall in the asthma of obesity;Journal of Applied Physiology;2015-01-01

4. A constitutive model for cytoskeletal contractility of smooth muscle cells;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2014-04-08

5. Airway responsiveness depends on the diffusion rate of methacholine across the airway wall;Journal of Applied Physiology;2012-05-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3