Microenvironment in metastasis: roadblocks and supportive niches

Author:

Pein Maren12,Oskarsson Thordur123

Affiliation:

1. Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI-STEM gGmbH), Heidelberg, Germany;

2. Cell Biology and Tumor Biology Program, German Cancer Research Center (DKFZ), Heidelberg, Germany; and

3. German Cancer Consortium (DKTK), Heidelberg, Germany

Abstract

In many cancers, malignant cells can spread from the primary tumor through blood circulation and initiate metastasis in secondary organs. Metastatic colonization may depend not only on inherent properties of cancer cells, but also on suitable microenvironments in distant sites. Increasing evidence suggests that the nature of the microenvironment may determine the fate of disseminated cancer cells, providing either hindrance or support for cancer cell propagation. This can result in strong selective pressure where the vast majority of cancer cells, invading a secondary organ, are either eliminated or maintained in a dormant state. The ability of cancer cells to fend off or circumvent anti-metastatic signals from the stroma and the capacity to manipulate the local microenvironment towards a supporting environment, a metastatic niche, may be essential for metastatic growth. The molecular interactions between cancer cells and the stroma are still enigmatic, but recent studies are beginning to reveal their nature. Here, we discuss the interactive relationship between metastatic cancer cells and host stroma, involving selection and adaptation of metastasis-initiating cells and host tissue remodeling. Understanding the dynamic and continuously evolving cross talk between metastatic cancer cells and the stroma may be crucial when developing cancer treatments.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3