MicroRNA-30e-3p reduces coronary microembolism-induced cardiomyocyte pyroptosis and inflammation by sequestering HDAC2 from the SMAD7 promoter

Author:

Dai Rixin1ORCID,Ren Yanling1,Lv Xiangwei1,Chang Chen1,He Shirong1,Li Quanzhong1,Yang Xiheng1,Ren Lei2,Wei Riming3,Su Qiang14ORCID

Affiliation:

1. Department of Cardiology, Affiliated Hospital of Guilin Medical University, Guilin, People’s Republic of China

2. Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, People’s Republic of China

3. College of Biotechnology, Guilin Medical University, Guilin, People’s Republic of China

4. Guangxi Health Commission Key Laboratory of Disease Proteomics Research, Guilin, People’s Republic of China

Abstract

This study investigates the mechanism by which microRNA (miR)-30e-3p reduces coronary microembolism (CME)-induced cardiomyocyte pyroptosis and inflammation. Cardiac function tests, histological staining, and transmission electron microscopy were performed on CME-model rats injected with adeno-associated viral vectors. Cardiomyocytes were transfected 24 h before a cellular model of pyroptosis was established via treatment with 1 μg/mL lipopolysaccharide (LPS) for 4 h and 5 mM ATP for 30 min. Pyroptosis, inflammation, and Wnt/β-catenin signaling in cardiomyocytes were detected. Dual-luciferase reporter assays and/or RNA pull-down assays were performed to verify the binding of miR-30e-3p to HDAC2 mRNA or HDAC2 to the SMAD7 promoter. Chromatin immunoprecipitation was used to assess the level of H3K27 acetylation at the SMAD7 promoter. miR-30e-3p and SMAD7 expression levels were downregulated and HDAC2 expression was upregulated with CME. The overexpression of miR-30e-3p restored cardiac functions in CME-model rats and reduced serum cTnI, IL-18, and IL-1β levels, microinfarcts, inflammatory cell infiltration, apoptosis, collagen content, and GSDMD-N, cleaved caspase-1, and NLRP3 expression in the myocardium, but these effects were reversed by SMAD7 knockdown. The overexpression of miR-30e-3p or knockdown of HDAC2 reduced LDH, IL-18, and IL-1β secretion, propidium iodide intake, and GSDMD-N, NLRP3, cleaved caspase-1, Wnt3a, Wnt5a, and β-catenin expression in the cardiomyocyte model. miR-30e-3p inhibited the expression of HDAC2 by binding HDAC2 mRNA. HDAC2 repressed the expression of SMAD7 by catalyzing H3K27 deacetylation at the SMAD7 promoter. miR-30e-3p, by binding HDAC2 to promote SMAD7 expression, reduces CME-induced cardiomyocyte pyroptosis and inflammation.

Funder

Guangxi Key Research and Development Program

Guangxi Health Commission Key Laboratory of Disease Proteomics Research

National Natural Science Foundation of China

Natural Science Foundation of Guangxi Province

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3