Caveolin-3 plays a critical role in autophagy after ischemia-reperfusion

Author:

Kassan Adam123,Pham Uyen13,Nguyen Quynhmy13,Reichelt Melissa E.4,Cho Eunbyul13,Patel Piyush M.13,Roth David M.13,Head Brian P.13,Patel Hemal H.13

Affiliation:

1. Department of Anesthesiology, University of California, San Diego, La Jolla, California;

2. Sam and Rose Stein Institute for Research on Aging, Department of Psychiatry, School of Medicine, University of California, San Diego, California;

3. Veterans Affairs San Diego Healthcare System, San Diego, California; and

4. School of Biomedical Sciences, University of Queensland, St. Lucia, Queensland, Australia

Abstract

Autophagy is a dynamic recycling process responsible for the breakdown of misfolded proteins and damaged organelles, providing nutrients and energy for cellular renovation and homeostasis. Loss of autophagy is associated with cardiovascular diseases. Caveolin-3 (Cav-3), a muscle-specific isoform, is a structural protein within caveolae and is critical to stress adaptation in the heart. Whether Cav-3 plays a role in regulating autophagy to modulate cardiac stress responses remains unknown. In the present study, we used HL-1 cells, a cardiac muscle cell line, with stable Cav-3 knockdown (Cav-3 KD) and Cav-3 overexpression (Cav-3 OE) to study the impact of Cav-3 in regulation of autophagy. We show that traditional stimulators of autophagy (i.e., rapamycin and starvation) result in upregulation of the process in Cav-3 OE cells while Cav-3 KD cells have a blunted response. Cav-3 coimmunoprecipitated with beclin-1 and Atg12, showing an interaction of caveolin with autophagy-related proteins. In the heart, autophagy may be a major regulator of protection from ischemic stress. We found that Cav-3 KD cells have a decreased expression of autophagy markers [beclin-1, light chain (LC3-II)] after simulated ischemia and ischemia-reperfusion (I/R) compared with WT, whereas OE cells showed increased expression. Moreover, Cav-3 KD cells showed increased cell death and higher level of apoptotic proteins (cleaved caspase-3 and cytochrome c) with suppressed mitochondrial function in response to simulated ischemia and I/R, whereas Cav-3 OE cells were protected and had preserved mitochondrial function. Taken together, these results indicate that autophagy regulates adaptation to cardiac stress in a Cav-3-dependent manner.

Funder

U.S. Department of Veterans Affairs (VA)

HHS | National Institutes of Health (NIH)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3