Functional loss of DHRS7C induces intracellular Ca2+ overload and myotube enlargement in C2C12 cells via calpain activation

Author:

Arai Shinobu1,Ikeda Masataka1,Ide Tomomi1,Matsuo Yuka1,Fujino Takeo1,Hirano Katsuya2,Sunagawa Kenji3,Tsutsui Hiroyuki1

Affiliation:

1. Department of Cardiovascular Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan;

2. Department of Cardiovascular Physiology Faculty of Medicine, Kagawa University, Kagawa, Japan; and

3. Department of Therapeutic Regulation of Cardiovascular Homeostasis, Center for Disruptive Cardiovascular Medicine, Kyushu University, Fukuoka, Japan

Abstract

Dehydrogenase/reductase member 7C (DHRS7C) is a newly identified NAD/NADH-dependent dehydrogenase that is expressed in cardiac and skeletal muscle and localized in the endoplasmic/sarcoplasmic reticulum (ER/SR). However, its functional role in muscle cells remains to be fully elucidated. Here, we investigated the role of DHRS7C by analyzing mouse C2C12 myoblasts deficient in DHRS7C (DHRS7C-KO cells), overexpressing wild-type DHRS7C (DHRS7C-WT cells), or expressing mutant DHRS7C [DHRS7C-Y191F or DHRS7C-K195Q cells, harboring point mutations in the NAD/NADH-dependent dehydrogenase catalytic core domain (YXXXK)]. DHRS7C expression was induced as C2C12 myoblasts differentiated into mature myotubes, whereas DHRS7C-KO myotubes exhibited enlarged cellular morphology after differentiation. Notably, both DHRS7C-Y191F and DHRS7C-K195Q cells also showed similar enlarged cellular morphology, suggesting that the NAD/NADH-dependent dehydrogenase catalytic core domain is pivotal for DHRS7C function. In DHRS7C-KO, DHRS7C-Y191F, and DHRS7C-K195Q cells, the resting level of cytosolic Ca2+ and total amount of Ca2+ storage in the ER/SR were significantly higher than those in control C2C12 and DHRS7C-WT cells after differentiation. Additionally, Ca2+ release from the ER/SR induced by thapsigargin and 4-chloro-m-cresol was augmented in these cells and calpain, a calcium-dependent protease, was significantly activated in DHRS7C-KO, DHRS7C-Y191F, and DHRS7C-K195Q myotubes, consistent with the higher resting level of cytosolic Ca2+ concentration and enlarged morphology after differentiation. Furthermore, treatment with a calpain inhibitor abolished the enlarged cellular morphology. Taken together, our findings suggested that DHRS7C maintains intracellular Ca2+ homeostasis involving the ER/SR and that functional loss of DHRS7C leads to Ca2+ overload in the cytosol and ER/SR, resulting in enlarged cellular morphology via calpain activation.

Funder

Japan Society for the Promotion of Science (JSPS)

Japan Agency for Medical Research and Development

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3