Ion transport mechanisms in rat parotid intralobular striated ducts

Author:

Paulais M.1,Cragoe E. J.1,Turner R. J.1

Affiliation:

1. Clinical Investigations and Patient Care Branch, National Institute ofDental Research, National Institutes of Health, Bethesda, Maryland20892.

Abstract

The intracellular pH (pHi) indicator 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein and microfluorimetry were used to characterize several ion transport mechanisms in rat parotid striated ducts. The recovery of ductal pHi from an acute acid load was Na+ dependent and inhibited by the amiloride analogue ethylisopropylamiloride with 50% inhibitory concentration 4.7 +/- 0.8 microM, indicating the presence of a Na(+)-H+ exchanger of the amiloride-insensitive type. The rate of this recovery was stimulated approximately 20% in ducts pretreated with the muscarinic agonist carbachol (10(-5) M) and inhibited approximately 20% in ducts pretreated with the beta-adrenergic agonist isoproterenol (10(-6) M). Upon removal of extracellular K+, ductal pHi rapidly decreased (0.19 +/- 0.02 pH units/min), consistent with a coupling between K+ and H+ (or OH-) fluxes in this tissue. In HCO(3-)-containing medium, the acidification due to K+ removal was blunted, arguing against ductal K(+)-HCO3- cotransport. However, the effect of K+ removal was inhibited by the K+ channel blocker Ba2+ (1 mM) and by the H+ channel blocker Zn2+ (25 microM), consistent with the involvement of electrically coupled K+ and H+ channels. The effect of K+ removal was unaffected by pretreatment of ducts with isoproterenol (10(-6) M) but markedly inhibited (approximately 50%) by pretreatment with carbachol (10(-5) M). No evidence for a significant component of Cl(-)-HCO3- exchange was found in striated ducts. The properties of the Na(+)-H+ exchanger and K(+)-H+ exchange mechanism identified here are consistent with their involvement in ductal salt reabsorption and secretion.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fundamentals of Bicarbonate Secretion in Epithelia;Physiology in Health and Disease;2020

2. Fundamentals of Bicarbonate Secretion in Epithelia;Ion Channels and Transporters of Epithelia in Health and Disease;2015-12-15

3. Channels and transporters in salivary glands;Cell and Tissue Research;2010-12-01

4. Physiology and Pathophysiology of Potassium Channels in Gastrointestinal Epithelia;Physiological Reviews;2008-07

5. Apical maxi-K (KCa1.1) channels mediate K+secretion by the mouse submandibular exocrine gland;American Journal of Physiology-Cell Physiology;2008-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3