The insulin receptor: structure, function, and signaling

Author:

Lee J.1,Pilch P. F.1

Affiliation:

1. Department of Biochemistry, Boston University, School of Medicine,Massachusetts 02118.

Abstract

The insulin receptor is a member of the ligand-activated receptor and tyrosine kinase family of transmembrane signaling proteins that collectively are fundamentally important regulators of cell differentiation, growth, and metabolism. The insulin receptor has a number of unique physiological and biochemical properties that distinguish it from other members of this large well-studied receptor family. The main physiological role of the insulin receptor appears to be metabolic regulation, whereas all other receptor tyrosine kinases are engaged in regulating cell growth and/or differentiation. Receptor tyrosine kinases are allosterically regulated by their cognate ligands and function as dimers. In all cases but the insulin receptor (and 2 closely related receptors), these dimers are noncovalent, but insulin receptors are covalently maintained as functional dimers by disulfide bonds. The initial response to the ligand is receptor autophosphorylation for all receptor tyrosine kinases. In most cases, this results in receptor association of effector molecules that have unique recognition domains for phosphotyrosine residues and whose binding to these results in a biological response. For the insulin receptor, this does not occur; rather, it phosphorylates a large substrate protein that, in turn, engages effector molecules. Possible reasons for these differences are discussed in this review. The chemistry of insulin is very well characterized because of possible therapeutic interventions in diabetes using insulin derivatives. This has allowed the synthesis of many insulin derivatives, and we review our recent exploitation of one such derivative to understand the biochemistry of the interaction of this ligand with the receptor and to dissect the complicated steps of ligand-induced insulin receptor autophosphorylation. We note possible future directions in the study of the insulin receptor and its intracellular signaling pathway(s).

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 378 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3