Both CFTR and outwardly rectifying chloride channels contribute to cAMP-stimulated whole cell chloride currents

Author:

Schwiebert E. M.1,Flotte T.1,Cutting G. R.1,Guggino W. B.1

Affiliation:

1. Department of Physiology, Johns Hopkins University School of Medicine,Baltimore, Maryland 21205.

Abstract

From whole cell patch-clamp recordings at 35 degrees C utilizing either nystatin perforation or conventional methods with 5 mM MgATP in the pipette solution, it was demonstrated that both cystic fibrosis transmembrane conductance regulator (CFTR) chloride (Cl-) channels and outwardly rectifying Cl- channels (ORCC) contribute to adenosine 3',5'-cyclic monophosphate (cAMP)-activated whole cell Cl- currents in cultured human airway epithelial cells. These results were similar whether recordings were performed on two normal human cell lines or on two cystic fibrosis (CF) cell lines stably complemented with wild-type CF gene. These results were obtained by exploiting dissimilar biophysical properties of CFTR and ORCC currents such as the degree of rectification of the current-voltage relationship, the difference in sensitivity to Cl- channel-blocking drugs such as 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), calixarenes, and diphenylamine carboxylic acid (DPC), and the opposing Cl- relative to I- permeabilities of the two channels. In normal cells or complemented CF cells, 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate stimulated outwardly rectifying whole cell Cl- currents. Addition of DIDS in the presence of cAMP inhibited the outwardly rectifying portion of the cAMP-activated Cl- current. The remaining cAMP-activated, DIDS-insensitive, linear CFTR Cl- current was inhibited completely by DPC. Additional results showed that not only do ORCC and CFTR Cl- channels contribute to cAMP-activated Cl- currents in airway epithelial cells where wild-type CFTR is expressed but that both channels fail to respond to cAMP in delta F508-CFTR-containing CF airway cells. We conclude that CFTR not only functions as a cAMP-regulated Cl- channel in airway epithelial cells but also controls the regulation of ORCC.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3