Loss of glucose transporters is an early event in differentiation of HD3 cells

Author:

Mathew A.1,Grdisa M.1,Robbins P. J.1,White M. K.1,Johnstone R. M.1

Affiliation:

1. Department of Biochemistry, McGill University, Montreal, Quebec,Canada.

Abstract

The HD3 cell, a chicken erythroblast cell line infected with a temperature-sensitive avian erythroblastosis virus, becomes committed to differentiate to an erythrocyte upon temperature shift in presence of inducers. Before induction, the HD3 cell transports glucose and 2-deoxyglucose (2-DG). 3-O-methylglucose is poorly taken up. Upon induction of differentiation, glucose and 2-DG transport activity fall. Twenty-four hours postinduction, up to 75% of the glucose transport activity may disappear. By use of cDNA probes for chicken glucose transporters, two species of mRNA of 3.1 and 1.7 kb (equivalent to mammalian GLUT1 and GLUT3 mRNA, respectively) are detected. Both messages virtually disappear within 48 h after induction. Run-on assays show the cessation of synthesis of the corresponding RNAs parallel to the loss of glucose transport. In contrast to the glucose transporters, the nucleoside transporter level increases after induction of hematopoiesis. This developmental pattern is consistent with earlier studies showing that mature chicken erythrocytes have little glucose transport activity but retain appreciable levels of the nucleoside transporter and that nucleosides and glutamine provide major sources of oxidizable carbon compounds to sustain metabolism in circulating chicken erythrocytes.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Blood;Sturkie's Avian Physiology;2022

2. Blood;Sturkie's Avian Physiology;2015

3. Molecular and biochemical events during differentiation of the HD3 chicken erythroblastic cell line;The International Journal of Biochemistry & Cell Biology;2003-04

4. Regulation of glucose transport in differentiating HD3 cells;Cell Biochemistry and Function;2000-12

5. Erythrocytic differentiation and glyceraldehyde-3-phosphate dehydrogenase expression are regulated by protein phosphorylation and cAMP in HD3 cells;The International Journal of Biochemistry & Cell Biology;2000-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3