Free radicals uncouple the sodium pump in pig coronary artery

Author:

Elmoselhi A. B.1,Butcher A.1,Samson S. E.1,Grover A. K.1

Affiliation:

1. Department of Biomedical Sciences, McMaster University, Hamilton,Ontario, Canada.

Abstract

Free radicals may impair vital functions of several types of tissues including coronary artery smooth muscle. Because the Na+ pump plays a key role in maintaining coronary tone, the effects of superoxide and peroxide on this protein were examined. Ouabain-sensitive Rb+ uptake by denuded coronary artery rings was used in lieu of K+ transport by this pump. It was inhibited by exposing the rings for 90 min either to peroxide [50% inhibitory concentration (IC50) = 0.56 +/- 0.18 mM] or to superoxide generated by xanthine oxidase (XO; 0.3 mM xanthine and xanthine oxidase, IC50 = 0.08 +/- 02 mU/ml). The effect of peroxide was not overcome by superoxide dismutase and that of superoxide was not prevented by catalase. K(+)-activated ouabain-sensitive hydrolysis of p-nitrophenyl phosphate in the plasma membrane-enriched fraction isolated from the coronary artery smooth muscle was monitored as the hydrolytic activity of the Na+ pump. It was inhibited by exposing the membranes only to very high concentrations of peroxide (IC50 = 9.85 +/- 3.5 mM) or XO (IC50 = 5 +/- 2 mU/ml). The exposure to 2.5 mM H2O2 or 0.5 mU/ml XO reduced the Na(+)-dependent acylphosphate levels only by 41 +/- 3 and 30 +/- 4%, respectively even though either inhibited the Rb+ uptake by > 80%. Thus superoxide and peroxide uncoupled the hydrolytic activity of the Na+ pump from Rb+ uptake. We speculate that such an uncoupling in ischemia and reperfusion would result in dual damage: ion imbalance and continuous hydrolysis of ATP in the cells that are already starved.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Role of Oxidative Stress in the Genesis of Ventricular Arrhythmias;International Journal of Molecular Sciences;2020-06-12

2. Role of Ischemia–Reperfusion Injury in Coronary MVO;Coronary Microvascular Obstruction in Acute Myocardial Infarction;2018

3. Calcium Handling in Pulmonary Vasculature Under Oxidative Stress: Focus on SERCA;Regulation of Ca2+-ATPases,V-ATPases and F-ATPases;2015-12-11

4. Predicted effects of nitric oxide and superoxide on the vasoactivity of the afferent arteriole;American Journal of Physiology-Renal Physiology;2015-10-15

5. Effects of Reactive Oxygen Species on Sarco-/Endoplasmic Reticulum Ca2+ Pump in Pig Coronary Artery;Systems Biology of Free Radicals and Antioxidants;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3