Shortening velocity and ATPase activity of rat skeletal muscle fibers: effects of endurance exercise training

Author:

Schluter J. M.1,Fitts R. H.1

Affiliation:

1. Biology Department, Marquette University, Milwaukee, Wisconsin53233.

Abstract

Mechanical properties were measured in single skinned fibers from rat hindlimb muscle to test the hypothesis that the fast type IIb fiber exhibits a higher maximal shortening velocity (Vo) than the fast type IIa fiber and that the difference is directly attributable to a higher myofibrillar adenosinetriphosphatase (ATPase) activity in the type IIb fiber. Additional measurements were made to test the hypotheses that regular endurance exercise increases and decreases the Vo of the type I and IIa fiber, respectively, and that the altered Vo is associated with a corresponding change in the fiber ATPase activity. Rats were exercised by 8-12 wk of treadmill running for 2 h/day, 5 day/wk, up a 15% grade at a speed of 27 m/min. Fiber Vo was determined by the slack test, and the ATPase was measured fluorometrically in the same fiber. The myosin isozyme profile of each fiber was subsequently determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The mean +/- SE Vo (7.9 +/- 0.22 fiber lengths/s) of the type IIb fiber was significantly greater than the type IIa fiber (4.4 +/- 0.21 fiber lengths/s), and the higher Vo was associated with a higher ATPase activity (927 +/- 70 vs. 760 +/- 60 microM.min-1.mm-3). The exercise program induced cardiac hypertrophy and an approximately twofold increase in the mitochondrial marker enzyme citrate synthase. Exercise had no effect on fiber diameter or peak tension per cross-sectional area in any fiber type, but, importantly, it significantly increased (23%) both the Vo and the ATPase activity of the slow type I fiber of the soleus.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3