Acidification of three types of liver endocytic vesicles: similarities and differences

Author:

Van Dyke R. W.1,Belcher J. D.1

Affiliation:

1. Department of Medicine, University of California School of Medicine,San Francisco 94143.

Abstract

Endocytosed ligands move through a series of progressively more acidic vesicles. These differences in pH (pHi) could reflect differences in ion transport mechanisms. Vesicles representing three stages of endocytosis, compartment for uncoupling of receptor and ligand (CURL), multivesicular bodies (MVB), and receptor recycling compartment (RRC), were studied, and all exhibited ATP-dependent electrogenic acidification that was a saturable function of medium chloride. Initial rates of acidification differed (RRC > CURL > MVB), and proton influx was similar for CURL and RRC but slower for MVB. Steady-state ATP-dependent pHi in the three vesicles was more similar. Vesicle membrane potential was substantial (+41 to +69 mV) in low-chloride medium and greatest for RRC but was low (-6 to +6 mV) in 140 mM KCl. These vesicles also exhibited -22 to -37 mV Donnan potentials. Steady-state pump-generated proton electrochemical gradients (delta mu H+) ranged from 114 to 175 mV and were greater for CURL and RRC than for MVB; however, delta mu H+ changed little over a 140-fold difference in chloride concentration. Proton leak rates were faster in CURL and RRC than in MVB, but proton efflux was similar. Finally, proton fluxes and permeabilities, calculated with regard to surface area, differed in the opposite direction (MVB > CURL > RRC). Thus, for the endocytic vesicles studied, intrinsic differences in proton flux and in vesicle geometry could be demonstrated that contributed to differences in pre-steady-state vesicle pHi.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 93 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3