Polarization-dependent apical membrane CFTR targeting underlies cAMP-stimulated Cl- secretion in epithelial cells

Author:

Morris A. P.1,Cunningham S. A.1,Tousson A.1,Benos D. J.1,Frizzell R. A.1

Affiliation:

1. Department of Physiology and Biophysics, University of Alabama atBirmingham 35294-0005.

Abstract

The relationship between adenosine 3',5'-cyclic monophosphate (cAMP)-mediated Cl- secretion and the cellular location of the cystic fibrosis transmembrane conductance regulator (CFTR) was determined in both polarized (Cl.19A) and unpolarized (parental) HT-29 colonocytes expressing similar levels of CFTR mRNA and protein. CFTR immunolocalized to the apical membrane domain of polarized colonocytes exhibiting cAMP-responsive Cl- secretion. In contrast, CFTR staining was perinuclear in unpolarized colonocytes, which gave little or no cAMP-stimulated Cl- conductance responses. Thus cAMP-stimulated Cl- secretion coincided with an apical localization of CFTR. Brefeldin A (BFA) was used to perturb glycoprotein targeting in these cells. In polarized colonocytes, BFA caused a reversible, time-dependent decrease in the Cl-conductance response to cAMP but not Ca2+. Apical CFTR redistributed into large coalesced intracellular vesicles, located within the same plane as the microtubule organizing center, a marker for the trans-Golgi network (TGN). In preconfluent monolayers or unpolarized HT-29 cells, BFA had no effect on CFTR staining, which remained perinuclear. Mature, Golgi-processed CFTR protein was isolated from both polarized and unpolarized colonocytes. Thus the mechanism for polarization-dependent apical membrane CFTR targeting and the acquisition of cAMP-dependent Cl- secretion lies at or beyond the late Golgi-TGN in epithelial cells.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 181 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3