Ischemic defects in the electron transport chain increase the production of reactive oxygen species from isolated rat heart mitochondria

Author:

Chen Qun,Moghaddas Shadi,Hoppel Charles L.,Lesnefsky Edward J.

Abstract

Cardiac ischemia decreases complex III activity, cytochrome c content, and respiration through cytochrome oxidase in subsarcolemmal mitochondria (SSM) and interfibrillar mitochondria (IFM). The reversible blockade of electron transport with amobarbital during ischemia protects mitochondrial respiration and decreases myocardial injury during reperfusion. These findings support that mitochondrial damage occurs during ischemia and contributes to myocardial injury during reperfusion. The current study addressed whether ischemic damage to the electron transport chain (ETC) increased the net production of reactive oxygen species (ROS) from mitochondria. SSM and IFM were isolated from 6-mo-old Fisher 344 rat hearts following 25 min global ischemia or following 40 min of perfusion alone as controls. H2O2release from SSM and IFM was measured using the amplex red assay. With glutamate as a complex I substrate, the net production of H2O2was increased by 178 ± 14% and 179 ± 17% in SSM and IFM ( n = 9), respectively, following ischemia compared with controls ( n = 8). With succinate as substrate in the presence of rotenone, H2O2increased by 272 ± 22% and 171 ± 21% in SSM and IFM, respectively, after ischemia. Inhibitors of electron transport were used to assess maximal ROS production. Inhibition of complex I with rotenone increased H2O2production by 179 ± 24% and 155 ± 14% in SSM and IFM, respectively, following ischemia. Ischemia also increased the antimycin A-stimulated production of H2O2from complex III. Thus ischemic damage to the ETC increased both the capacity and the net production of H2O2from complex I and complex III and sets the stage for an increase in ROS production during reperfusion as a mechanism of cardiac injury.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3