Ca transients from Ca channel activity in rat cardiac myocytes reveal dynamics of dyad cleft and troponin C Ca binding

Author:

Vadakkadath Meethal Sivan1,Potter Katherine T.1,Redon David1,Heisey Dennis M.1,Haworth Robert A.1

Affiliation:

1. Department of Surgery, University of Wisconsin, Madison, Wisconsin 53792

Abstract

The properties of the dyad cleft can in principle significantly impact excitation-contraction coupling, but these properties are not easily amenable to experimental investigation. We simultaneously measured the time course of the rise in integrated Ca current ( ICa) and the rise in concentration of fura 2 with Ca bound ([Ca-fura 2]) with high time resolution in rat myocytes for conditions under which Ca entry is only via L-type Ca channels and sarcoplasmic reticulum (SR) Ca release is blocked, and compared these measurements with predictions from a finite-element model of cellular Ca diffusion. We found that 1) the time course of the rise of [Ca-fura 2] follows the time course of integrated ICaplus a brief delay (1.36 ± 0.43 ms, n = 6 cells); 2) from the model, high-affinity Ca binding sites in the dyad cleft at the level previously envisioned would result in a much greater delay (≥3 ms) and are therefore unlikely to be present at that level; 3) including ATP in the model promoted Ca efflux from the dyad cleft by a factor of 1.57 when low-affinity cleft Ca binding sites were present; 4) the data could only be fit to the model if myofibrillar troponin C (TnC) Ca binding were low affinity (4.56 μM), like that of soluble troponin C, instead of the high-affinity value usually used (0.38 μM). In a “good model,” the rate constants for Ca binding and dissociation were 0.375 times the values for soluble TnC; and 5) consequently, intracellular Ca buffering at the rise of the Ca transient is inferred to be low.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Probing biological interfaces by tracing proton passage across them;Photochemical & Photobiological Sciences;2006

2. Finite element modelling and simulations in cardiovascular mechanics and cardiology: A bibliography 1993–2004;Computer Methods in Biomechanics and Biomedical Engineering;2005-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3