Human platelet osmotic water and nonelectrolyte transport

Author:

Meyer M. M.,Verkman A. S.

Abstract

The osmotic water (Pf) and nonelectrolyte permeability (Ps) properties of human platelets were characterized using the stopped-flow light-scattering technique. At 37 degrees C, Pf = 0.007 +/- 0.001 cm/s, the urea reflection coefficient (sigma urea) = 0.95 +/- 0.04, and Ps for a series of permeant nonelectrolytes was (in cm X s-1 X 10(-6)) 2.1 (urea), 3.5 (glycerol), 3.8 (thiourea), 17 (ethylene glycol), 18 (acetamide), 23 (formamide), and 24 (butyramide). Pf did not depend on the size of the osmotic gradient or on the direction of volume flow. Mercurial sulfhydryl reagents did not inhibit osmotic water transport, and phloretin and phenylurea did not inhibit urea transport. There was a discontinuity in the temperature dependence for both Pf and urea permeability (P urea) at 36 degrees C; enthalpy (delta H) = 25 (greater than 36 degrees C) and 4.4 kcal/mol (less than 36 degrees C) for Pf, and delta H = 26 (greater than 36 degrees C) and 7 kcal/mol (less than 36 degrees C) for P urea. In contrast to the facilitated water and urea transport systems in the red blood cell, these results suggest that the mechanism for water and urea transport in the platelet is primarily by diffusion through membrane phospholipid. A computer-simulated model of platelet circulation through the renal medulla, based on the measured values for Pf, P urea, and sigma urea, indicated that platelets undergo an approximately 40% decrease in volume in the inner medulla and an approximately 20% overshoot in volume as they return to the external isosmotic environment.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3