Na+-H+ exchanger of human placental brush-border membrane: identification and characterization

Author:

Balkovetz D. F.,Leibach F. H.,Mahesh V. B.,Devoe L. D.,Cragoe E. J.,Ganapathy V.

Abstract

Syncytiotrophoblast brush-border membrane vesicles isolated from full-term human placentas were shown to transport Na+ against a concentration gradient in the presence of an outward proton gradient [( H+i] greater than [H+]o). This proton gradient-coupled Na+ uptake was markedly inhibited and the uphill transport abolished when the electrochemical proton gradient was dissipated by carbonylcyanide 4-(trifluoromethoxy) phenylhydrazone. The presence of nigericin also eliminated the concentrative uptake of Na+ in these vesicles. Dimethylamiloride and harmaline inhibited the proton gradient-induced Na+ uptake. The apparent inhibition constant for this process was 0.32 microM for dimethylamiloride was freely reversible and the inhibitor reduced the Na+ uptake by directly interacting with the exchanger protein rather than by dissipating the H+ gradient. The dimethylamiloride-sensitive Na+ uptake was saturable with respect to Na+. The affinity constant for Na+ was 7.8 +/- 1.2 mM and the maximal velocity was 38.7 +/- 2.4 nmol X mg protein-1 X min-1. The dimethylamiloride-insensitive Na+ uptake was not saturable and probably represented simple diffusion. The diffusional component accounted for only 10% of the total uptake. Li+ strongly competed with Na+ for the uptake process and the apparent inhibition constant was 3.6 +/- 0.4 mM. Tetraethylammonium also caused significant inhibition of Na+ uptake, whereas K+, Rb+, Cs+, and choline had no effect. These data provide evidence for the existence of a Na+-H+ exchanger in human placental brush-border membrane, and the properties of this exchanger are similar to those of the Na+-H+ exchanger identified in the brush-border membrane of mammalian kidney and small intestine.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 116 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Complex, coordinated and highly regulated changes in placental signaling and nutrient transport capacity in IUGR;Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease;2020-02

2. Placental Anatomy and Physiology;Obstetrics: Normal and Problem Pregnancies;2017

3. Role of ABC and Solute Carrier Transporters in the Placental Transport of Lamivudine;Antimicrobial Agents and Chemotherapy;2016-09

4. Placenta and Placental Transport Function;Knobil and Neill's Physiology of Reproduction;2015

5. Fluid and Electrolyte Physiology in the Fetus and Neonate;Kidney and Urinary Tract Diseases in the Newborn;2013-10-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3