Kv2.1 and silent Kv subunits underlie the delayed rectifier K+ current in cultured small mouse DRG neurons

Author:

Bocksteins Elke,Raes Adam L.,Van de Vijver Gerda,Bruyns Tine,Van Bogaert Pierre-Paul,Snyders Dirk J.

Abstract

Silent voltage-gated K+ (Kv) subunits interact with Kv2 subunits and primarily modulate the voltage dependence of inactivation of these heterotetrameric channels. Both Kv2 and silent Kv subunits are expressed in the mammalian nervous system, but little is known about their expression and function in sensory neurons. This study reports the presence of Kv2.1, Kv2.2, and silent subunit Kv6.1, Kv8.1, Kv9.1, Kv9.2, and Kv9.3 mRNA in mouse dorsal root ganglia (DRG). Immunocytochemistry confirmed the protein expression of Kv2.x and Kv9.x subunits in cultured small DRG neurons. To investigate if Kv2 and silent Kv subunits are underlying the delayed rectifier K+ current ( IK) in these neurons, Kv2-mediated currents were isolated by the extracellular application of rStromatoxin-1 (ScTx) or by the intracellular application of Kv2 antibodies. Both ScTx- and anti-Kv2.1-sensitive currents displayed two components in their voltage dependence of inactivation. Together, both components accounted for approximately two-thirds of IK. A comparison with results obtained in heterologous expression systems suggests that one component reflects homotetrameric Kv2.1 channels, whereas the other component represents heterotetrameric Kv2.1/silent Kv channels. These observations support a physiological role for silent Kv subunits in small DRG neurons.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3