Affiliation:
1. Department of Orthopedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
2. Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
Abstract
Homeobox A9 (HOXA9), the expression of which is promoted by mixed lineage leukemia 1 (MLL1) and WD-40 repeat protein 5 (WDR5), is a homeodomain-containing transcription factor that plays an essential role in regulating stem cell activity. HOXA9 has been found to inhibit skeletal muscle regeneration and delay recovery after muscle wounding in aged mice, but little is known about its role in denervated/reinnervated muscles. We performed detailed time-dependent expression analyses of HOXA9 and its promoters, MLL1 and WDR5, in rat gastrocnemius muscles after the following three types of sciatic nerve surgeries: nerve transection (denervation), end-to-end repair (repair), and sham operation (sham). Then, the specific mechanisms of HOXA9 were detected in vitro by transfecting primary satellite cells with empty pIRES2-DsRed2, pIRES2-DsRed2-HOXA9, empty pPLK/GFP-Puro, and pPLK/GFP-Puro-HOXA9 small hairpin RNA (shRNA) plasmids. We found, for the first time, that HOXA9 protein expression simultaneously increased with increasing denervated muscle atrophy severity and that upregulated MLL1 and WDR5 expression was partly associated with denervation. Indeed, in vitro experiments revealed that HOXA9 inhibited myogenic differentiation, affected the best known atrophic signaling pathways, and promoted apoptosis but did not eliminate the differentiation potential of primary satellite cells. HOXA9 may promote denervated muscle atrophy by regulating the activity of satellite cells.
Funder
the openning project from department of Hand Surgery, Huashan Hospital, Fudan University, Shanghai, China
the National Natural Science Foundation of China
Publisher
American Physiological Society
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献