TRPM4 channel inhibitors 9-phenanthrol and glibenclamide differentially decrease guinea pig detrusor smooth muscle whole-cell cation currents and phasic contractions

Author:

Malysz John1ORCID,Maxwell Sarah E.1ORCID,Yarotskyy Viktor1ORCID,Petkov Georgi V.1ORCID

Affiliation:

1. Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee

Abstract

Nonselective cation channels, consistent with transient receptor potential melastatin-4 (TRPM4), regulate detrusor smooth muscle (DSM) function. TRPM4 channels can exist as homomers or assemble with sulfonylurea receptors (SURs) as complexes. We evaluated contributions of TRPM4/SUR-TRPM4 channels to DSM excitability and contractility by examining the effects of TRPM4/SUR-TRPM4 channel modulators 9-phenanthrol, glibenclamide, and diazoxide on freshly-isolated guinea pig DSM cells (amphotericin-B perforated patch-clamp electrophysiology) and mucosa-free DSM strips (isometric tension recordings). In DSM cells, complete removal of extracellular Na+ decreased voltage-step-induced cation (non-K+ selective) currents. At high positive membrane potentials, 9-phenanthrol at 100 μM attenuated voltage step-induced currents more effectively than at 30 μM, revealing concentration-dependent, voltage-sensitive inhibition. In comparison to 9-phenanthrol, glibenclamide (100 μM) displayed lower inhibition of cation currents. In the presence of glibenclamide (100 μM), 9-phenanthrol (100 μM) further decreased the currents. The SUR-TRPM4 complex activator diazoxide (100–300 μM) weakly inhibited the currents. 9-Phenanthrol, but not glibenclamide or diazoxide, increased cell capacitance (a cell surface area indicator). In contractility studies, glibenclamide displayed lower potencies than 9-phenanthrol attenuating spontaneous and 20 mM KCl-induced DSM phasic contractions. While both compounds showed similar maximum inhibitions on DSM spontaneous phasic contractions, glibenclamide was generally less efficacious on 20 mM KCl-induced phasic contractions. In summary, the observed differential effects of 9-phenanthrol and glibenclamide on DSM excitability and contractility support unique mechanisms for the two compounds. The data suggest that SUR-TRPM4 complexes do not contribute to DSM function. This study advances our understanding of pharmacological effects of glibenclamide and 9-phenanthrol on DSM cell cation currents.

Funder

HHS | NIH | National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3