Molecular and cellular basis of praziquantel action in the cardiovascular system

Author:

Yahya Nawal A.12,Lanham Janelle K.1,Sprague Daniel J.1,Palygin Oleg3ORCID,McCorvy John D.1,Marchant Jonathan S.1ORCID

Affiliation:

1. Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin

2. Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota

3. Division of Nephrology, Medical University of South Carolina, Charleston, South Carolina

Abstract

The anthelmintic drug praziquantel (PZQ) causes contraction of parasitic schistosomes as well as constriction of blood vessels within the mesenteric vasculature of the host where the adult blood flukes reside. The contractile action of PZQ on the vasculature is mediated by the activation of host serotonergic 5-HT2B receptors (5-HT2BRs). However, the molecular basis for PZQ interaction with these targets and the location of these 5-HT2B receptors in the vessel wall have not been experimentally defined. Evaluation of a PZQ docking pose within the 5-HT2BR orthosteric site, using both Ca2+ reporter and bioluminescence resonance energy transfer (BRET) assays, identified residues F3406.51 and F3416.52 (transmembrane helix 6, TM6) as well as L209EL2 (extracellular loop 2) as critical for PZQ-mediated agonist activity. A key determinant of PZQ selectivity for the 5-HT2B receptor over the 5-HT2A/2C receptors was determined by M2185.39 in transmembrane helix 5 (TM5) of the orthosteric site. Mutation of this residue to valine (M218V), as found in 5-HT2A and 5-HT2C, decreased PZQ agonist activity, whereas the reciprocal mutation (V215M) in 5-HT2C increased PZQ activity. Two-photon imaging in intact mesenteric arterial strips visualized PZQ-evoked Ca2+ transients within the smooth muscle cells of the vessel wall. PZQ also triggered cytoplasmic Ca2+ signals in arterial smooth muscle cells in primary culture that were isolated from mesenteric blood vessels. These data define the molecular basis for PZQ action on 5-HT2B receptors localized in vascular smooth muscle.

Funder

HHS | NIH | National Heart, Lung, and Blood Institute

HHS | NIH | National Institute of Allergy and Infectious Diseases

HHS | NIH | National Institute of General Medical Sciences

Cardiovascular Center, Medical College of Wisconsin

University of South Carolina

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3