Adenine nucleotide degradation in slow-twitch red muscle

Author:

Tullson P. C.1,Whitlock D. M.1,Terjung R. L.1

Affiliation:

1. Department of Physiology, State University of New York, Syracuse13210.

Abstract

The catabolism of adenine nucleotides (AdN) in rat soleus muscle (predominantly slow twitch) is very different from that in fast-twitch muscle. AMP deaminase is highly inhibited during brief (3 min) intense (120 tetani/min) in situ stimulation, resulting in little inosine 5'-monophosphate (IMP) accumulation (0.21 mumol/g). Even with ligation of the femoral artery during the same brief intense contraction conditions there is surprisingly little increase in IMP (0.37 mumol/g), although AdN depletion is evident (-1.30 mumol/g). We have tested the hypothesis that accumulation of purine nucleosides and bases accounts for the AdN depletion by measuring purine degradation products using high-performance liquid chromatography. There was no stoichiometric accumulation of purine degradation products to account for the observed AdN depletion even though metabolite recovery was essentially quantitative. We hypothesis that under these conditions AdN are converted to a form different from purine nucleoside and base degradation products. In contrast to the inhibition of AMP deamination seen during brief ischemia, slow-twitch muscle depletes a substantial fraction (28%) of muscle AdN (1.75 mumol/g) that can be accounted for stoichiometrically as purine degradation products during an extended 10-min ischemic period of mild (12 tetani/min) contraction conditions. IMP accumulation (1 mumol/g) is most prominent with inosine, accounting for 23% (0.4 mumol/g) of the depleted AdN, showing that slow-twitch red muscle is capable of both AMP deamination and the subsequent production of purine nucleosides during an extended period of ischemic contractions. The present results indicate that AdN metabolism in the soleus muscle is complex, yielding expected degradation products or a loss of total purines, depending on contraction conditions.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3