Affiliation:
1. Department of Physiology and Biophysics, Cornell University MedicalCollege, New York, New York 10021.
Abstract
Effects of norepinephrine and Ca+ on Na(+)-K+ pump and pacemaker current were investigated by simultaneous measurement of intracellular Na+ activity (aiNa) and membrane potential in driven (1 Hz) and quiescent sheep cardiac Purkinje fibers. Concurrently, twitch force was measured in driven fibers, in which norepinephrine (NE) produced a decrease in aiNa, a prolongation in action potential duration, and a hyperpolarization in diastolic membrane potential, Vdm. In contrast, in quiescent fibers, NE produced an increase in aiNa and a depolarization in resting membrane potential, Vm. The decrease in aiNa, prolongation in action potential duration, and hyperpolarization in Vdm produced by NE were blocked by 5 x 10(-6) M strophanthidin, presumably through inhibition of the Na(+)-K+ pump. The increase in aiNa and membrane depolarization caused by NE were abolished by high [K+]o or Cs+, presumably through inhibition of the pacemaker current, if. These results indicate that in driven fibers NE stimulates predominantly the Na(+)-K+ pump, producing a decrease in aiNa and that in quiescent fibers it increases predominantly if, producing an increase in aiNa. The effect of NE on driven and quiescent fibers differs because of the voltage dependence of if and perhaps the Na(+)-K+ pump. Consequently, the relative magnitude of the two opposing effects of NE on aiNa appears to be dependent on membrane potential. In quiescent fibers, Cs+ monotonically decreased aiNa to a steady-state value, while Cs+ hyperpolarized membrane potential and then slowly depolarized to a steady-state level, producing a transient hyperpolarization. In driven fibers, Cs+ decreased aiNa, shortened action potential duration, and depolarized Vdm. Cs+ decreased aiNa more in quiescent fibers than in driven fibers. The decrease in aiNa and hyperpolarization in membrane potential produced by Cs+ in quiescent fibers were abolished by depolarization induced by high K+ extracellular concentration (25.4 mM) but were not abolished or reduced by 5 x 10(-6) M strophanthidin. These results suggest that the decrease in aiNa and hyperpolarization in membrane potential by Cs+ are caused by blockage of if but not by stimulation of the Na(+)-K+ pump and that if is an important source of Na+ loading into cells.
Publisher
American Physiological Society
Cited by
101 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献