Affiliation:
1. Department of Physiology, University of Alabama, Birmingham35294.
Abstract
Increased basolateral membrane K conductance accompanies stimulation of Cl secretion across canine trachea. To assess the K conductance properties, we permeabilized the apical membranes with amphotericin B and monitored the current and conductance caused by K flow across the basolateral membranes. Under basal unstimulated conditions, two K conductances could be distinguished by blockers. One was inhibited only by barium; the other was sensitive also to quinidine and lidocaine. The permeabilities of the basal conductance pathways to K and Rb were similar (PK/PRb approximately equal to 1.5). The secretory agonist, epinephrine, selectively increased the quinidine-insensitive conductance, implicating it in the Cl secretory response. Cell swelling induced a third conductance with a low permeability to Rb (PK/PRb approximately equal to 10) that was quinidine sensitive. In tissues not treated with amphotericin, neither quinidine nor Rb-for-K replacement inhibited transepithelial Cl secretion. Thus neither of the quinidine-sensitive K conductances (basal or swelling induced) contribute to the increase in basolateral K conductance during Cl secretion. Cell shrinkage inhibited all three conductances and secretion, suggesting that the initial priority of the cell is volume regulation.
Publisher
American Physiological Society
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献