Myosin-product complex in the resting state and during relaxation of smooth muscle

Author:

Butler T. M.1,Siegman M. J.1,Mooers S. U.1,Narayan S. R.1

Affiliation:

1. Department of Physiology, Jefferson Medical College, Thomas JeffersonUniversity, Philadelphia, Pennsylvania 19107.

Abstract

Previous findings suggested that in resting smooth muscle ADP is bound to myosin and that phosphorylation of the myosin, and its subsequent interaction with actin, increases the rate of ADP release. We have now extended these studies to include measurements of bound Pi as well as bound ADP in permeabilized rabbit portal vein. We report that in resting smooth muscle that has been exposed to [3H]ATP and [gamma-32P]ATP, followed by a chase in an unlabeled relaxing solution, the ratio of bound [3H]ADP to bound [32P]Pi is close to unity, and both are released at approximately the same rate. This suggests that myosin exists predominantly with both ADP and Pi bound under resting conditions and that the release of one is quickly followed by the release of the other. In contrast, there is a significant 30% excess of bound Pi over ADP in a muscle during relaxation from an isometric contraction. Under these conditions, while force output is slowly decreasing, both light chain phosphorylation and adenosinetriphosphatase (ATPase) activity have decreased to near-resting values. The time course of relaxation is similar to the time course of Pi release from both the resting and relaxing muscle. We propose that during relaxation the dephosphorylated cross bridges which are bearing force have Pi but not ADP bound and that detachment of the cross bridge (and thus force decay) is limited by Pi release from myosin which occurs at the same rate as in the resting muscle.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3