Effects of phlorizin and sodium on glucose-elicited alterations of cell junctions in intestinal epithelia

Author:

Atisook K.1,Carlson S.1,Madara J. L.1

Affiliation:

1. Department of Pathology, Brigham and Women's Hospital, Harvard MedicalSchool, Boston, Massachusetts.

Abstract

Glucose alters absorptive cell tight junction structure and, as deduced from an impedance analysis model, diminishes tight junction resistance in the small intestine (J.R. Pappenheimer, J. Membr. Biol. 100: 137-148, 1987; and J.L. Madara and J.R. Pappenheimer, J. Membr. Biol. 100: 149-164, 1987). Here we provide further evidence in support of this hypothesis using the conventional approach of analysis of mucosal sheets mounted in Ussing chambers. This approach offers advantages for investigating underlying mechanisms, including the effects of ions and inhibitors on the regulation of intercellular junctions by glucose. We show that phlorizin blocks a resistance decrease elicited by glucose and demonstrate that substitution of choline for sodium also prevents the response. The dilatations in absorptive cell tight junctions that accompany this glucose-elicited response are similarly prevented by phlorizin exposure or sodium substitution. The effects of phlorizin on junctional permeability can also be demonstrated in vivo. Phlorizin reduces the transjunctional flux of creatinine in glucose-perfused intestines of anesthetized animals, even when account is taken of the reduction of fluid absorption caused by phlorizin. Last, in vivo perfusion studies suggest that although, at 25 mM luminal glucose, virtually all glucose absorption is transcellular, at a luminal glucose concentration of 125 mM approximately 30% of glucose absorption occurs paracellularly because of solvent drag across tight junctions of altered permeability.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 123 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3