Regulation of oxidative phosphorylation in the mammalian cell

Author:

Balaban R. S.1

Affiliation:

1. Laboratory of Cardiac Energetics, National Institutes of Health,Bethesda, Maryland 20892.

Abstract

The cell is capable of maintaining a steady-state flux of energy from mitochondrial oxidative phosphorylation, producing ATP, to the cytosolic adenosinetriphosphatases (ATPases), performing work. Considerable effort has been devoted to investigating the individual mechanisms involved in these two processes. However, less effort has been directed toward learning how these reactions of energy metabolism interact through the cytosol to maintain the observed steady state in the intact cell. The "classical" model for the cytosolic interaction of these two processes involves the feedback of ATP hydrolysis products, ADP and Pi, from the ATPases to oxidative phosphorylation. This model is based on data from isolated mitochondria in which the rate of oxidative phosphorylation is controlled by the concentration of ADP and Pi. Yet, recent data from intact tissues with high oxidative phosphorylation capacities (i.e., heart, brain, and kidney) indicate that the cytosolic concentration of ADP and Pi do not change significantly with work. These data imply that this simple feedback model is not adequate to explain the regulation of energy metabolism in these tissues. Other sites within the oxidative phosphorylation process must be playing a regulatory role or the kinetics of ATP synthesis must be very different than currently believed to establish the steady state. This review covers the potential sites within oxidative phosphorylation which may be regulated through cytosolic transducers to result in the necessary feedback network regulating the steady-state flow of energy in the cell. These sites will include substrate delivery to the cytochrome chain, the processes involved in the phosphorylation of ADP to ATP, and the delivery of oxygen.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3