Furosemide blocks basolateral membrane Cl- permeability in gallbladder epithelium

Author:

Stoddard J. S.1,Altenberg G. A.1,Ferguson M. L.1,Reuss L.1

Affiliation:

1. Department of Physiology and Biophysics, University of Texas MedicalBranch, Galveston 77550.

Abstract

In Necturus gallbladders bathed in a NaCl Ringer solution buffered with 10 mM HCO3(-)-1% CO2, furosemide (added to the serosal solution) caused a concentration-dependent hyperpolarization of both cell membranes that was slow and reversible. At 10(-3) M furosemide, the basolateral membrane voltage (Vcs) increased significantly from -71 +/- 3 to -85 +/- 3 mV, the depolarization of Vcs elicited by a 10-fold rise in serosal [K+] increased from 34 +/- 4 to 50 +/- 1 mV, the depolarization elicited by lowering serosal [Cl-] from 98 to 8.1 mM was reduced from 15 +/- 1 to 1 +/- 1 mV, and the depolarization in response to lowering serosal [HCO3-] from 10 to 1 mM was reduced from 13 +/- 1 to 5 +/- 0.4 mV. Furosemide could in principle decrease the basolateral membrane Cl- conductance (Gcl), increase the basolateral membrane K+ conductance, or have a combined effect. To distinguish among these possibilities, we estimated the resistance of the basolateral membrane (Rb) by means of two-point intraepithelial cable analysis experiments. Furosemide increased Rb by 22%, which indicates that furosemide reduces basolateral membrane Gcl. The effect cannot be attributed to inhibition of apical membrane anion exchange by serosal addition of furosemide, because base secretion from cells to lumen is unchanged. We conclude that furosemide blocks reversibly basolateral membrane electrodiffusive Cl- permeability. A concomitant stimulation of basolateral membrane electrodiffusive K+ permeability is also possible.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3