Affiliation:
1. Department of Biophysics, School of Medicine and Dentistry, Universityof Rochester, New York 14642.
Abstract
Gigaohm-seal whole cell recording techniques were used to monitor function of the Na(+)-coupled sugar transport system in LLC-PK1 cells. The currents coupled to sugar transport were identified as those that are induced by the presence of 10 mM alpha-methylglucoside (AMG) in either the extracellular or intracellular compartment and were inhibited by addition of 320-800 microM phlorizin to the extracellular bathing medium. The sugar-induced currents are small, 15-20 pA, but of the expected magnitude as determined from the known kinetic parameters for Na(+)-coupled sugar transport in LLC-PK1 cells. The phlorizin-sensitive currents are Na+ dependent and can be studied under conditions in which the net Na+ and sugar flux (and consequently the Na+ electrical current) is in either the inward or outward direction. The reversal potential of the sugar-induced currents measured under conditions with high Na+ and AMG concentrations inside the cell is close to values predicted from thermodynamic principles, assuming a coupling stoichiometry of 2 Na+: 1 sugar for the transport system. The reversal potential of the sugar-induced currents with high extracellular Na+ and AMG is not equal to the predicted value, but it is of the polarity expected for inward-imposed solute gradients. Reasons for the observed discrepancy between observed and calculated values are discussed.
Publisher
American Physiological Society
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献