Carbachol induces oscillations of membrane potassium conductance in a colonic cell line, T84

Author:

Devor D. C.1,Simasko S. M.1,Duffey M. E.1

Affiliation:

1. Department of Physiology, School of Medicine, State University of NewYork, Buffalo 14214.

Abstract

Effects of carbachol on membrane potential and current in T84 cells were determined using whole cell patch-clamp techniques. When the pipettes contained a standard KCl solution and the bath contained a standard NaCl solution, carbachol (100 microM) caused a rapid hyperpolarization to the K+ equilibrium potential (EK+), followed by potential oscillations. When membrane potential was clamped to 0 mV, carbachol induced an outwardly directed K+ current in 31 of 37 cells, with a peak value of 618 +/- 51 (SE) pA. In 77% of these cells the current oscillated and gradually declined to base line. Atropine (20 microM) blocked this response. In symmetric KCl solutions the carbachol-induced current reversed at 0 mV with no rectification. Ba2+ or Cs+ did not block the current, but tetraethylammonium ion (TEA) reduced the number of responding cells. Although a Cl- conductance was found in resting cells, carbachol did not cause an increase in Cl- current when the cells were voltage-clamped to EK+, or when voltage-clamped to +/- 60 mV while bathed in symmetric NaCl solutions. When the Ca2(+)-buffering capacity of the pipette solution was increased, 80% of the cells responded to carbachol, but only 10% oscillated; however, no K+ current was induced by carbachol when the pipette was made nominally Ca2+ free. The current was not affected by removal of Ca2+ from the bath. These results show that carbachol induces an oscillating Ca2(+)-activated K+ conductance in T84 cells, but no Cl- conductance. This K+ conductance is dependent on the mechanisms that regulate intracellular Ca2+.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 78 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. KCa3.1 potentiation stimulates Cl secretion in F508del and G551D CFTR-corrected primary human bronchial epithelial cells;American Journal of Physiology-Cell Physiology;2022-10-01

2. KCa3.1 in Epithelia;Studies of Epithelial Transporters and Ion Channels;2020

3. Propofol inhibits carbachol-induced chloride secretion by directly targeting the basolateral K+channel in rat ileum epithelium;Neurogastroenterology & Motility;2016-08-30

4. KCa3.1 in Epithelia;Ion Channels and Transporters of Epithelia in Health and Disease;2015-12-15

5. Physiological Regulation of Gastrointestinal Ion Transport;Microbial Pathogenesis and the Intestinal Epithelial Cell;2014-04-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3