Effects of phenylarsine oxide on stimulation of glucose transport in rat skeletal muscle

Author:

Henriksen E. J.1,Holloszy J. O.1

Affiliation:

1. Department of Medicine, Washington University School of Medicine, St.Louis, Missouri 63110.

Abstract

The trivalent arsenical phenylarsine oxide (PAO) inhibits insulin-stimulated glucose transport in adipocytes and skeletal muscle through direct interactions with vicinal sulfhydryls. In muscle, glucose transport is also activated by contractile activity and hypoxia. It was therefore the purpose of the present study to investigate whether vicinal sulfhydryls are involved in the stimulation of glucose transport activity in the isolated rat epitrochlearis muscle by hypoxia or contractions. PAO (greater than 5 microM) caused a twofold increase in rate of transport of the nonmetabolizable glucose analogue 3-O-methylglucose (3-MG) that was completely prevented by cytochalasin B, the vicinal dithiol dimercaptopropanol, dantrolene, or 9-aminoacridine, both inhibitors of sarcoplasmic reticulum Ca2+ release, or omission of extracellular Ca2+. Although PAO treatment (greater than or equal to 20 microM) prevented approximately 80% of the increase in 3-MG transport caused by insulin, it resulted in only a approximately 50% inhibition of the stimulation of 3-MG transport by either hypoxia or contractile activity. PAO treatment (40 microM) of muscles already maximally stimulated by insulin, contractile activity, or hypoxia did not reverse the enhanced rate of 3-MG transport. These data suggest that vicinal sulfhydryls play a greater role in the activation of glucose transport by insulin than by muscle contractions or hypoxia. The finding that PAO inhibits the stimulation of glucose transport, but does not affect glucose transport after it has been stimulated, provides evidence that vicinal sulfhydryls are involved in the pathways for glucose transport activation in muscle, but not in the glucose transport mechanism itself.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3