Motor patterns of the small intestine explained by phase-amplitude coupling of two pacemaker activities: the critical importance of propagation velocity

Author:

Huizinga Jan D.12,Parsons Sean P.1,Chen Ji-Hong12,Pawelka Andrew1,Pistilli Marc1,Li Chunpei2,Yu Yuanjie2,Ye Pengfei2,Liu Qing2,Tong Mengting2,Zhu Yong Fang1,Wei Defei2

Affiliation:

1. Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, Canada; and

2. Department of Gastroenterology and Hepatology, Renmin Hospital of Wuhan University, Wuhan University Institute of Digestive and Liver Diseases, Key Laboratory of Hubei Province for Digestive System Diseases, Wuhan, China

Abstract

Phase-amplitude coupling of two pacemaker activities of the small intestine, the omnipresent slow wave activity generated by interstitial cells of Cajal of the myenteric plexus (ICC-MP) and the stimulus-dependent rhythmic transient depolarizations generated by ICC of the deep muscular plexus (ICC-DMP), was recently hypothesized to underlie the orchestration of the segmentation motor pattern. The aim of the present study was to increase our understanding of phase-amplitude coupling through modeling. In particular the importance of propagation velocity of the ICC-DMP component was investigated. The outcome of the modeling was compared with motor patterns recorded from the rat or mouse intestine from which propagation velocities within the different patterns were measured. The results show that the classical segmentation motor pattern occurs when the ICC-DMP component has a low propagation velocity (<0.05 cm/s). When the ICC-DMP component has a propagation velocity in the same order of magnitude as that of the slow wave activity (∼1 cm/s), cluster type propulsive activity occurs which is in fact the dominant propulsive activity of the intestine. Hence, the only difference between the generation of propagating cluster contractions and the Cannon-type segmentation motor pattern is the propagation velocity of the low-frequency component, the rhythmic transient depolarizations originating from the ICC-DMP. Importantly, the proposed mechanism explains why both motor patterns have distinct rhythmic waxing and waning of the amplitude of contractions. The hypothesis is brought forward that the velocity is modulated by neural regulation of gap junction conductance within the ICC-DMP network.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3