Polyamine-modulated expression of c-mycplays a critical role in stimulation of normal intestinal epithelial cell proliferation

Author:

Liu Lan,Li Li,Rao Jaladanki N.,Zou Tongtong,Zhang Huifang M.,Boneva Dessy,Bernard Marasa S.,Wang Jian-Ying

Abstract

The nuclear protein c-Myc is a transcription factor involved in the control of cell cycle. Our previous studies indicated that cellular polyamines are absolutely required for cell proliferation in crypts of small intestinal mucosa and that polyamines have the ability to stimulate expression of the c- myc gene. The current study went further to determine whether induced nuclear c-Myc plays a role in stimulation of cell proliferation by polyamines in intestinal crypt cells (IEC-6 line). Exposure of normal quiescent cells after 24-h serum deprivation to 5% dialyzed fetal bovine serum (dFBS) increased both cellular polyamines and expression of the c- myc gene. Increased c-Myc protein formed heterodimers with its binding partner, Max, and specifically bound to the Myc/Max binding site, which was associated with an increase in DNA synthesis. Depletion of cellular polyamines by pretreatment with α-difluoromethylornithine (DFMO) prevented increases in c- myc expression and DNA synthesis induced by 5% dFBS. c- Myc gene transcription and cell proliferation decreased in polyamine-deficient cells, whereas the natural polyamine spermidine given together with DFMO maintained c- myc gene expression and cell growth at normal levels. Disruption of c- myc expression using specific c- myc antisense oligomers not only inhibited normal cell growth (without DFMO) but also prevented the restoration of cell proliferation by spermidine in polyamine-deficient cells. Ectopic expression of wild-type c- myc by recombinant adenoviral vector containing c- myc cDNA increased cell growth. These results indicate that polyamine-induced nuclear c-Myc interacts with Max, binds to the specific DNA sequence, and plays an important role in stimulation of normal intestinal epithelial cell proliferation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3