Force augmentation and stimulated actin polymerization in swine carotid artery

Author:

Tejani Ankit D.1,Rembold Christopher M.1

Affiliation:

1. Cardiovascular Division, Department of Internal Medicine, University of Virginia Health System, Charlottesville, Virginia

Abstract

The phenomenon of posttetanic potentiation, in which a single submaximal contraction or series of submaximal contractions strengthens a subsequent contraction, has been observed in both skeletal and cardiac muscle. In this study, we describe a similar phenomenon in swine carotid arterial smooth muscle. We find that a submaximal K+ depolarization increases the force generation of a subsequent maximal K+ depolarization; we term this “force augmentation.” Force augmentation was not associated with a significant increase in crossbridge phosphorylation or shortening velocity during the maximal K+ depolarization, suggesting that the augmented force was not caused by higher crossbridge phosphorylation or crossbridge cycling rates. We found that the characteristics of the tissue before the maximal K+ depolarization predicted the degree of force augmentation. Specifically, measures of stimulated actin polymerization (higher prior Y118 paxillin phosphorylation, higher prior F-actin, and transition to a more solid rheology evidenced by lower noise temperature, hysteresivity, and phase angle) predicted the subsequent force augmentation. Increased prior contraction alone did not induce force augmentation since readdition of Ca2+ to Ca2+-depleted tissues induced a partial contraction that was not associated with changes in noise temperature or with subsequent force augmentation. These data suggest that stimulated actin polymerization may produce a substrate for increased crossbridge mediated force, a process we observe as force augmentation.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3