Affiliation:
1. Brigham and Women's Hospital, Department of Medicine, Harvard Medical School, Boston, Massachusetts 02115, USA.
Abstract
Insulin activation of red blood cell (RBC) Na+/H+ (NHE) and Na+/Li+ (NLiE) exchanges is mimicked by okadaic acid, thus suggesting that it may change the state of phosphorylation of serine/threonine NHE residues. To investigate the role of the serine/threonine protein kinase C (PKC) in insulin regulation, we evaluated the effect of phorbol 12-myristate 13-acetate (PMA; 1 microM) and insulin on PKC activity, membrane protein phosphorylation, and the activation kinetics of both exchangers. Our studies revealed that PMA decreased cytosolic PKC activity (4.1 +/- 0.6 to 2.3 +/- 0.5 pmol x mg protein(-1) x min(-1), n = 9, P < 0.001), increased membrane PKC activity (42.3 +/- 5 to 132 +/- 12 pmol x mg protein(-1) x min(-1), n = 11, P < 0.001), and enhanced serine phosphorylation of bands 3, 4.1, and 4.9 membrane proteins. PMA markedly reduced the Michaelis constant (Km) for intracellular H+ (415 +/- 48 to 227 +/- 38 nM, n = 11, P < 0.01) but had no effect on the maximal transport rate (Vmax) of NHE and the Km for Na+ of NLiE. NHE activation and PKC activity were affected differently by insulin (100 microU/ml) and PMA. Insulin increased the Vmax of NHE and the Km for Na+ of NLiE but had no effect on the Km for intracellular H+ and membrane PKC activity. These findings lead us to conclude that in the human RBC, NHE is modulated by PKC and insulin through different biochemical mechanisms.
Publisher
American Physiological Society
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献