Pathways of hepatic oxalate synthesis and their regulation

Author:

Poore R. E.1,Hurst C. H.1,Assimos D. G.1,Holmes R. P.1

Affiliation:

1. Department of Urology, Bowman Gray School of Medicine, Wake ForestUniversity, Winston-Salem, North Carolina 27157, USA.

Abstract

Important features of hepatic oxalate synthesis remain uncertain despite its clinical significance. To clarify the terminal steps of the biosynthetic pathway and their modulation, we have examined oxalate and glyoxylate synthesis in vitro using isolated guinea pig peroxisomes and purified lactate dehydrogenase (LDH). Glycolate was rapidly oxidized to glyoxylate by isolated peroxisomes followed by a slower conversion of glyoxylate to oxalate. The glycolate oxidase (GO)-catalyzed conversion of glyoxylate to oxalate was strongly inhibited by physiological concentrations of glycolate and lactate. In contrast, the LDH-catalyzed conversion of glyoxylate to oxalate was only marginally affected by physiological concentrations of lactate and unaffected by physiological glycolate concentrations. This inhibition pattern suggests that LDH, not GO, catalyzes this conversion in vivo. Alanine inhibited oxalate synthesis by converting the bulk of the glyoxylate to glycine. On exposure to high alanine concentrations, however, inhibition was not complete and peroxisomes were able to convert sufficient glycolate to oxalate to account for daily endogenous oxalate production. NADH was a potent inhibitor of oxalate production by LDH by increasing glycolate formation from glyoxylate. Glycine was an ineffective source of glyoxylate, and an alkaline pH, a high-glycine concentration, and a prolonged incubation time were required to obtain a detectable synthesis. These results suggest that oxalate synthesis will be modulated by the metabolic state of the liver and resultant changes in NADH, lactate, and alanine levels.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3