Expression of CFTR in human and bovine thyroid epithelium

Author:

Devuyst O.1,Golstein P. E.1,Sanches M. V.1,Piontek K.1,Wilson P. D.1,Guggino W. B.1,Dumont J. E.1,Beauwens R.1

Affiliation:

1. Department of Physiology, Johns Hopkins Medical School, Baltimore,Maryland 21205, USA. devuyst@nefr.ucl.ac.be

Abstract

The expression of cystic fibrosis transmembrane conductance regulator (CFTR) in the thyroid has not been documented to date, although a role for CFTR in the thyroid follicular epithelium is suggested both clinically, by the occurrence of subclinical hypothyroidism in patients with cystic fibrosis (CF), and physiologically, by the presence of low-conductance, adenosine 3',5'-cyclic monophosphate-activated Cl channels in the follicular cells. Using reverse transcriptase-polymerase chain reaction with nested primers derived from exons 13 and 14 of the human CF gene, we have now documented the presence of CFTR mRNA in the human thyroid. Western blot analyses using six antibodies directed against different domains of human CFTR showed that a 165-kDa band was present in membrane extracts from bovine and human thyroid. This protein has the predicted size of mature CFTR and was not detected with preimmune serum or preadsorbed antiserum. By immunofluorescence and immunoperoxidase, CFTR was located in the follicular cells, with a diffuse, intracellular labeling pattern. Quantitative analysis revealed that 64% of the follicles were CFTR positive, but only 16% of the follicular cells were stained per follicle. The number of CFTR-positive cells was inversely proportional to the size of the follicle. These results 1) demonstrate the expression of CFTR at the mRNA and protein levels in human and bovine thyroid follicular cells and 2) suggest that CFTR expression could be instrumental in follicular enlargement.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3