Affiliation:
1. Laboratory of Cellular and Molecular Pharmacology, National Instituteof Environmental Health Sciences, National Institutes of Health, ResearchTriangle Park, North Carolina 27709, USA.
Abstract
The Ca2+-ATPase inhibitors, thapsigargin and cyclopiazonic acid, depleted intracellular Ca2+ stores, induced large increases in intracellular Ca2+ concentration, and caused apoptosis in S49 cells. Removal of extracellular Ca2+ augmented apoptosis due to thapsigargin, indicating that depletion of Ca2+ from intracellular stores is responsible for apoptosis with this agent. Overexpression of the apoptosis suppressor, Bcl-2, inhibited apoptosis due to thapsigargin but did not affect thapsigargin-induced Ca2+ signaling. Dexamethasone induced apoptosis, diminished the size of the endoplasmic reticulum Ca2+ pool, and caused a small elevation of intracellular Ca2+. However, this elevation was not due to Ca2+ influx because the increase was similar in the presence or absence of Ca2+ in the medium. Furthermore, in contrast to the results with thapsigargin, apoptosis due to dexamethasone was unchanged in a Ca2+-free medium. These results indicate that depletion of Ca2+ stores initiates a pathway leading to apoptosis. Elevations in cytoplasmic Ca2+ appears to play a lesser role than previously thought in the actions of Bcl-2 and glucocorticoids.
Publisher
American Physiological Society
Cited by
149 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献