Affiliation:
1. Department of Physiology, Nagoya City University Medical School,Japan.
Abstract
When sarcoplasmic reticulum (SR) vesicles prepared from frog skeletal muscles were actively loaded with Ca2+, pretreatment of the SR with 2.2 mM (0.01%) ethanol for 30 s significantly potentiated 5 mM caffeine-induced release of Ca2+ from 16.7 +/- 3.7 nmol/mg protein in control without ethanol to 28.0 +/- 2.6 nmol/mg (P < 0.05, n = 5). Ethanol alone caused no release of Ca2+ from the SR. Exposure of the Ca2+-release channel, incorporated into planar lipid bilayers, to 2 mM caffeine significantly increased open probability (Po) and mean open time, but unitary conductance was not affected. Ethanol (2.2 mM) enhanced caffeine-induced Ca2+-release channel activity, with Po reaching 3.02-fold and mean open time 2.85-fold the values in the absence of ethanol. However, ethanol alone did not affect electrical parameters of single-channel current, over a concentration range of 2.2 mM (0.01%) to 217 mM (1%). The synergistic action of ethanol and caffeine on the channel activity could be attributable to enhancement of caffeine-induced release of Ca2+ from the SR vesicles in the presence of ethanol.
Publisher
American Physiological Society
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献