Bastadins relate ryanodine-sensitive and -insensitive Ca2+ efflux pathways in skeletal SR and BC3H1 cells

Author:

Pessah I. N.1,Molinski T. F.1,Meloy T. D.1,Wong P.1,Buck E. D.1,Allen P. D.1,Mohr F. C.1,Mack M. M.1

Affiliation:

1. Department of Molecular Biosciences, University of California, Davis95616, USA.

Abstract

Bastadins potently interact with the FK-506-binding protein of 12 kDa (FKBP12)-ryanodine receptor (Ry1R) complex in skeletal muscle to enhance a high-affinity ryanodine binding conformation (M. M. Mack, T. F. Molinski, E. D. Buck, and I. N. Pessah. J. Biol. Chem. 269: 23236-23249, 1994). Bastadins are used to examine the relationship between ryanodine-sensitive and ryanodine-insensitive Ca2+ efflux pathways that coexist in junctional sarcoplasmic reticulum (SR) vesicles from rabbit skeletal muscle and differentiated BC3H1 cells. Complete block of caffeine-sensitive Ca2+ channels with micromolar ryanodine or ruthenium red does not alter the steady-state loading capacity of SR. Inhibition of sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA) pumps with thapsigargin unmasks a ryanodine- and ruthenium red-insensitive Ca2+ efflux pathway. Bastadin 5 alone does not inhibit Ca2+ efflux unmasked by inhibition of SERCA pumps, but, in combination with blocking concentrations of ryanodine or ruthenium red, it eliminates the ryanodine-insensitive Ca2+ "leak" and enhances steady-state loading capacity of SR vesicles approximately 2.5-fold. These actions of bastadins occur in the same concentration range that enhances the number of high-affinity binding sites for [3H]ryanodine (50% effective concentration of approximately 2 microM). Similar effects on SR Ca2+ transport are found with FK-506 and ryanodine in combination. Block of Ry1R in intact BC3H1 cells with ryanodine does not eliminate the prominent Ca2+ leak unmasked by thapsigargin. A membrane-permeant mixture of bastadins in combination with ryanodine nearly eliminates the Ca2+ leak unmasked by thapsigargin, even though the Ca2+ stores are replete. The requirement of both a known Ry1R blocker and bastadins in combination provides a pharmacological link between ryanodine-sensitive Ca2+ channels and ryanodine-insensitive leak pathways in isolated junctional SR and BC3H1 cells. Together, these results strongly suggest that bastadins, through their modulatory actions on the FKBP12-Ry1R complex, convert ryanodine-insensitive leak states into ryanodine-sensitive channels that recognize [3H]ryanodine with high affinity.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3