Evidence for a calmodulin-dependent phospholipase A2 that inhibits Na-K-ATPase

Author:

Okafor M. C.1,Schiebinger R. J.1,Yingst D. R.1

Affiliation:

1. Department of Physiology, Wayne State University School of Medicine,Detroit, Michigan 48201, USA.

Abstract

We tested whether calnaktin, a proposed Ca/calmodulin (CaM)-dependent protein that inhibits the Na-K-ATPase, was a kinase, a phosphatase, a phospholipase A2 (PLA2), or a Ca-dependent protease. Human red blood cell membranes were extracted to remove associated calmodulin but to retain the proposed endogenous calnaktin. Exclusively cytoplasmic proteins and cofactors were presumably absent. In these membranes, free Ca inhibited the Na-K-ATPase with an inhibition constant (K[i]) of > or = 9 microM at a Na concentration of 18 mM. Addition of 100 nM CaM decreased the Ki to < 2 microM and increased the percent inhibition at 2 microM free Ca from 18 +/- 1 to 68 +/- 2%. The inhibitory effect of Ca/CaM was reversible, indicating that calnaktin is not a protease. Neither staurosporine (500 nM), 1-(N,O-bis[5-isoquinolinesulfonyl]-N-methyl-L-tyrosyl)-4-phenylpipera zin e (5 microM), nor genistein (100 microM) diminished Ca/CaM inhibition of the Na-K-ATPase. Thus there is no evidence that this protein is a kinase. Likewise, the phosphatase inhibitors microcystin (1 microM) and okadaic acid (10 microM) had no effect. PLA2 inhibitors arachidonyl trifluoromethyl ketone (AACOCF3), parabromophenacyl bromide (pBPB), and quinacrine all abolished Ca/CaM inhibition of the Na-K-ATPase. Ca/CaM also increased PLA2 activity, as reflected by an increase in the slope of fluorescence signal of 10-pyrene phosphatidylcholine, a substrate for PLA2. This Ca/CaM-induced change in slope was inhibited by both pBPB and AACOCF3. These data suggest that human red cell membranes contain a form of PLA2 that is activated by Ca/CaM and that this enzyme may mediate Ca/CaM inhibition of the Na-K-ATPase.

Publisher

American Physiological Society

Subject

Cell Biology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3